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（三）共生智慧的培育需要多方努力（三）共生智慧的培育需要多方努力

教育体系需要培养系统思维、跨文化理

解和伦理判断能力；治理机制需要增强包容

性、适应性和全球协调；文化领域需要促进

对话、理解和意义探索。

归根结底，人机交互、虚实结合的未来

之道，并非一条预设的坦途，而是一个需要

一代代人基于历史的智慧、当下的勇气与对

未来的责任，去持续探寻、不断修正的动态

平衡过程。这既是挑战，也是这个时代赋予

人类的伟大使命。在技术快速变革的当下，

我们唯有以智慧明辨方向，以仁爱关怀生

命，以勇气面对挑战，方能在人机之间、虚

实之际，找到文明持续繁荣之道。

（转载自：学术前沿；原文有删减）

类存在与价值的最终基石，防止文明的“脱

实向虚”。我们应培养在虚实世界之间自如

切换和平衡生活的能力，维护对物理身体、

自然环境和真实关系的承诺。

在创新与规制之间，营造鼓励技术创

新的宽松环境，同时建立敏捷而有效的伦理

与法律框架，以“负责任创新”引导科技向

善。规制不应该扼杀创新，而应为其设定方

向和边界，确保技术创新与社会价值相协

调。

在个体与整体之间，在保障个人自由与

权利的同时，强化对人类命运共同体和地球

“生命之网”的责任担当。个人发展的追求

需要考虑对他人和后代的影响，局部利益的

追求需要顾及整体系统的健康。

邵井海：带切换扩散过程的遍历性、稳定性及长时行为研究

一、引言：从确定性模型到随机环一、引言：从确定性模型到随机环

境切换的范式演进境切换的范式演进

数学模型作为理解复杂系统动态行为的

工具，其演进逻辑往往遵循着从理想化假设

向逼近现实复杂性发展的路径。早在20世纪

20年代，Lotka和Volterra提出的种群竞争模型

便奠定了生物数学的基础，该模型使用常微

分方程组来描述多个物种在同一生态位下的

相互作用。在这种经典的确定性框架下，物

种自身的增长率及物种间的竞争系数被设定

为常数，这在理论推导上具有封闭性和完备

性，其解通常处于有界区域内，便于通过经

典的数学分析手段进行研究。然而，这种静

态参数的设定在面对充满不确定性的现实世

界时显露出了本质的局限性，因为自然界的

各种速率参数并非恒定不变，而是随时间推

移呈现出动态演化的特征。

为了修正这一偏差，早期的尝试主要集

中在引入时间变量，使参数成为时间的确定

性函数，但这依然难以捕捉系统内部难以预

测的随机波动。随着随机分析理论的发展，

特别是基于布朗运动的伊藤积分理论的建

立，研究者开始通过引入白噪声来模拟环境

的随机扰动，从而将常微分方程拓展为随机

微分方程。在这种范式下，增长率等参数被

分解为平均趋势与随机涨落两部分，系统的

解不再局限于紧致区间，而是可以在无界空

间中游走。这一跨越不仅改变了方程的拓扑

性质，也使得现代概率论与随机分析成为了

解析系统行为的核心工具。

尽管引入白噪声极大地提升了模型的

解释力，但它主要刻画的是一种连续的、幅

度较小的微观扰动。在现实的生物系统或金

融市场中，往往存在着另一种更为剧烈的、

定性的环境突变。例如，生态系统中的旱季

与雨季交替，或者金融市场中牛市与熊市的

轮动，这类宏观环境的切换会导致系统参数

发生本质性的跳跃。白噪声无法充分描述
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得捉襟见肘。单一的增长参数意味着股票价

格在长期趋势上要么依概率趋于无穷大，要

么趋于零，无法描述市场在繁荣与萧条之间

周期性波动的复杂行为。通过引入环境切换

机制，我们可以构建带切换的几何布朗运动

模型。在此模型中，期望回报率和波动率成

为依赖于市场状态的随机变量。数学分析表

明，这一系统的长时行为，即股票价格最终

是趋于无穷还是归零，不再取决于某一特定

时刻的参数，而是取决于各个状态下增长因

子的加权平均值。这里的权重正是马尔可夫

链的平稳分布，即系统在长期运行中处于某

种特定市场状态的时间比例。如果加权后的

平均增长率大于零，即便中间经历过导致资

产缩水的熊市，长期来看资产价格仍将趋于

增长；反之则走向衰退。这一结论将直观的

市场经验转化为严格的数学表达，揭示了环

境切换的频率与驻留时间如何决定系统的最

终命运。

（二）数学结构的复杂性挑战（二）数学结构的复杂性挑战

从数学分析的角度来看，引入带切换扩

散过程极大地改变了原有随机微分方程的解

析性质，带来了一系列具有挑战性的理论问

题。这类过程的无穷小生成元，即描述过程

局部演化规律的核心算子，呈现出一种由两

部分组成的混合结构：一部分是对应于连续

扩散行为的二阶微分算子，另一部分则是对

应于离散状态跳跃的差分算子。这种混合算

子的出现，意味着我们在求解相关方程时，

面对的不再是单一的微分方程，而是一个相

互耦合的微分方程组。在这个方程组中，不

同状态下的未知函数通过转移速率矩阵紧密

纠缠在一起。例如，当系统处于状态i时，其

演化规律不仅受当前状态的微分算子控制，

还受到来自其他状态j的函数项的影响，这种

耦合作用往往起到了破坏性的干扰，使得经

典的偏微分方程理论中的许多构造性方法失

效。更为复杂的情况出现在状态依赖的情形

中，即环境切换的速率本身可能依赖于系统

的当前状态。例如，在大规模金融系统中，

这种结构性的环境变迁。因此，一种更为普

适且符合实际的建模思路应运而生，即在随

机微分方程的基础上引入马尔可夫链，用以

描述系统在不同离散状态之间的切换机制。

这种被称为带切换的扩散过程的模型，通过

将连续的扩散运动与离散的马尔可夫跳跃相

结合，为研究复杂系统在多重随机环境下的

长时行为、稳定性及遍历性提供了更为精确

的数学框架。本文将聚焦于此类过程的数学

特性，探讨环境切换如何决定系统的最终命

运。

二、带切换扩散过程的建模机制与二、带切换扩散过程的建模机制与

应用领域应用领域

在明确了引入环境切换的必要性后，我

们进一步探讨如何通过数学语言构建这一复

杂的动态系统，并考察其在不同学科背景下

的具体表现形式。这一部分将重点阐释带切

换扩散过程的建模逻辑，并剖析其背后独特

的数学结构特征。

（一）生物学与金融学的模型重构（一）生物学与金融学的模型重构

为了捕捉环境定性变化对系统的影响，

我们不再将模型参数视为单一的随机变量，

而是将其设定为依赖于一个离散事件过程的

函数。具体而言，引入一个取值于有限状态

空间（如1,2,…,N）的连续时间马尔可夫链，

用不同的状态值代表截然不同的环境背景。

例如，在生物种群模型中，状态1可能对应着

利于繁殖的湿润环境，而状态2则对应限制生

存的干旱环境。在这种框架下，物种的内禀

增长率不再是一个恒定的常数，而是一个随

马尔可夫链状态跳跃而变化的随机过程。这

种建模方式使得原本平滑的动力学方程能够

容纳突变因素，从而更真实地反映物种在多

变自然条件下的生存图景。这一思想在金融

数学领域同样具有深远的解释力。以经典的

几何布朗运动为例，该模型长期以来被广泛

用于刻画股票价格的演化，其核心假设在于

期望回报率和波动率维持恒定。然而，这一

假设在面对牛市与熊市交替的市场现实时显

创新洞见创新洞见
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得非常返（即趋向发散）。反之，两个本身

不稳定的系统，通过特定的随机切换机制，

也可能在宏观上表现出稳定性。这类似于工

程学中的疲劳测试，一个部件可能既耐高温

也耐低温，但在高低温反复交替的应力下却

可能迅速失效。这一理论发现警示我们，不

能简单地通过分析单一环境下的子系统性质

来推断整体系统的稳定性，必须将切换机制

本身作为内生变量纳入分析框架。

（二）稳定性判据的构建：从M-矩阵到（二）稳定性判据的构建：从M-矩阵到

混合Lyapunov指数混合Lyapunov指数

为了克服上述直观判断的局限，我们需

要建立一套严格的定量判据来判定带切换系

统的稳定性。早期的研究试图寻找一个能够

适用于所有环境状态的共同 Lyapunov 函数，

但这在处理非线性系统时往往面临构造上的

困难。我们的研究提出了一种更为精细的准

则，即通过构造两个辅助函数，从每个特定

的环境状态中提取出特征指数 iβ 。这里的 iβ
可以被理解为该环境对系统起到的稳定或破

坏作用的量化指标，通常负值代表收敛（稳

定），正值代表发散（不稳定）。系统的最

终命运取决于这些特征指数 iβ 在长时间尺度
上的加权平均效果。这一权重由马尔可夫链

的平稳分布 iπ 决定，即系统在各个状态停留
的时间比例。判别准则表明：如果加权平均

值 i i 0π β <∑ ，即稳定因素在时间维度上占据
主导地位，那么整个系统将表现为常返甚至

强遍历（以指数速率收敛于平稳分布）；反之，

如果平均值大于 0，系统则可能走向灭绝或发

散。此外，该准则还将稳定性分析转化为对

特征矩阵（M-矩阵）的代数性质研究。通过

分析由转移速率矩阵Q 与特征指数 β 构成的

算子的谱特征（如主特征值），我们可以将

复杂的随机分析问题转化为较为成熟的矩阵

代数问题。这一理论框架不仅解释了为何牛

市与熊市的交替可能导致资产价格的长期增

长（即便存在下跌区间），也为生物学中判

断物种在波动环境下的存续概率提供了可计

算的数学工具。这表明，在随机切换系统中，

股指的剧烈波动可能反过来触发宏观经济政

策的调整，从而改变市场状态的切换频率。

此时，马尔可夫链的转移矩阵不再是常数矩

阵，而是状态变量的函数。这种双向耦合使

得连续轨道与离散跳跃之间的相互作用变得

异常复杂，无论是在理论推导还是数值计算

上都对研究者提出了极高的要求。这也正是

该领域研究从简单的线性切换向非线性、状

态依赖型切换深入时必须攻克的理论堡垒。

三、随机环境下的系统长时行为：三、随机环境下的系统长时行为：

常返性与稳定性判定常返性与稳定性判定

在构建了描述随机环境切换的数学模型

之后，核心的科学问题便转向了对系统长时

行为（Long-time Behavior）的定性分析。

对于生物种群而言，这意味着物种是否会灭

绝；对于金融资产而言，这关乎价格是趋于

稳定还是发散。在数学上，这些问题被抽象

为对随机过程常返性（Recurrence）与遍历性

（Ergodicity）的判定。

（一）常返性的物理意义与直观矛盾（一）常返性的物理意义与直观矛盾

常返性是随机过程理论中的一个基础

概念，用来描述系统轨迹是否会无限次地返

回某一特定有界区域。以经典的布朗运动为

例，在一维或二维空间中，粒子从原点出

发，无论游走到何方，最终以概率1会返回原

点附近的单位球内，这种性质即为常返性。

它在统计推断中具有极其重要的应用价值：

只有当系统是常返的，且存在平稳分布（即

遍历性）时，我们才能通过长时间的观测数

据来准确估计模型参数。若系统是非常返

的，其轨迹可能趋向于无穷远，导致样本数

据无法代表系统的稳态特征，进而使得统计

推断失效。然而，引入环境切换后，系统的

常返性表现出了极具反直观的特征。Pinsky和
Scheutzow在1992年构造的著名反例深刻揭示

了这一现象：即便在每一个固定的环境状态

下系统都是常返的（即无论是在单一的环境1
还是环境2中，系统均能稳定回归），当这两

个环境随机交替出现时，整个系统却可能变
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这一结论在金融实践中具有深刻的警示

意义：它揭示了即便市场在绝大多数时间处

于平稳状态，只要存在极低概率进入某种高

波动机制（如金融危机期间的极端状态），

资产收益或利率的长期分布就会具有肥尾效

应，导致极端风险的概率远高于传统高斯模

型的预测。这种由环境切换诱发的分布形态

突变，是单一模型难以捕捉的系统性风险来

源。

（二）模型参数估计的误差传播与控制（二）模型参数估计的误差传播与控制

从理论模型走向实际应用时，另一大挑

战在于参数估计的误差。在带切换的扩散过

程中，核心参数，即马尔可夫链的转移速率

矩阵（Q 矩阵），往往需要通过历史数据进

行统计推断。由于样本量的限制和观测噪声

的存在，估计得到的矩阵 Q 与真实的矩阵Q
之间必然存在误差。这种参数层面的偏差会

如何传播至系统最终的输出（即随机过程 tX
的分布），是评估模型可靠性的关键。

由于布朗运动的路径不可微且高度随

机，试图直接控制两条具体样本轨道之间的

距离是不现实的。因此，我们将视角转向了

分布层面的误差控制，利用Wasserstein距离

（一种衡量两个概率分布之间差异的度量）

来量化真实过程 tX 与近似过程 tX 之间的偏离
程度。我们建立的理论框架证明，在满足一

定的耗散性条件下，这两个过程分布之间的

Wasserstein距离可以被两个Q矩阵之间的差异

范数所控制。这意味着，只要参数估计的误

差足够小，模型预测的分布就会收敛于真实

分布，从而保证了模型的鲁棒性。

更为重要的是，考虑到现实系统的复

杂性，研究者往往会对模型进行降维处理，

即忽略那些发生概率极低的状态（状态截

断），仅保留主要状态（如仅保留前m个状

态）。我们的研究进一步给出了这种截断

近似下的误差上界。通过将转移矩阵分块处

理，我们证明了即便在忽略部分状态的情况

下，只要被忽略状态向主要状态转移的速率

受到一定限制，简化模型的分布依然可以有

稳定性不再是局部性质的简单叠加，而是子

系统动力学与切换规则相互作用涌现出的全

局特征。

四、分布特征的异质性与模型误差四、分布特征的异质性与模型误差

控制控制

在确立了系统稳定性的宏观判据之后，

研究的触角进一步延伸至微观层面的分布特

征分析与实际应用中的误差控制。这一部分

主要探讨环境切换如何改变随机过程的概率

分布形态，以及在参数估计不可避免存在误

差的现实约束下，如何从数学上量化并控制

模型预测的准确性。

（一）切换环境对平衡分布尾部特征的（一）切换环境对平衡分布尾部特征的

重塑重塑

在金融数学与风险管理中，随机过程

的平衡分布性质，尤其是尾部特征（Ta i l 
Behavior）具有决定性的意义。以经典的CIR
（Cox-Ingersoll-Ross）利率模型为例，该模型

因其均值回归特性和非负性，被广泛用于描

述利率演化。在单一环境的标准CIR模型中，

若平衡分布存在，它通常表现为轻尾（Light-
tailed）特征，即极端事件发生的概率随数

值增大呈指数级衰减。这意味着在标准模型

下，利率出现极端波动的风险是相对可控

的。

然而，当引入环境切换机制后，平衡

分布的形态发生了本质性的重塑。我们的研

究发现，切换系统的整体性质并非各个子系

统性质的简单平均。虽然通过稳定性判据可

知，只要各个环境参数的加权平均值满足特

定条件，系统依然可以保持遍历性（即存在

平衡分布）；但是，该平衡分布的尾部特征

却表现出极强的短板效应。具体而言，只要

存在任意一个环境状态，其对应的子系统参

数导致了重尾（Heavy-tailed）分布（即只有

低阶矩存在，高阶矩发散），那么无论其他

环境状态多么稳定，甚至无论系统在那个不

稳定状态停留的时间多么短暂，整个系统最

终的平衡分布都将呈现出重尾特征。

创新洞见创新洞见
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于平衡分布尾部特征的研究表明，环境切换

具有极强的风险放大效应，单一高风险状态

的存在足以改变整个系统的分布性质，使其

呈现出重尾特征，这一发现对于完善金融风

险管理中的极值理论具有重要价值。此外，

针对实际应用中不可避免的参数估计误差，

我们提出的基于Wasserstein距离的误差控制理

论，证明了模型在分布层面上的连续性与鲁

棒性，为统计推断结果在理论模型中的可靠

性提供了严格的数学保障。

展望未来，随着数据科学与人工智能技

术的深度融合，带切换扩散过程的研究将面

临新的机遇与挑战。一方面，如何在更高维

度的状态空间中处理非线性、状态依赖型切

换，仍是随机分析领域亟待攻克的难题；另

一方面，如何将现有的理论误差界与实际观

测数据相结合，开发更高效的算法以降低计

算复杂度，是推动该理论走向工程与金融实

战的关键。我们坚信，对随机环境切换机制

的深入理解，将持续深化我们对复杂系统在

不确定性条件下演化规律的认知。

效地逼近原始高维模型的分布。这一成果为

在计算资源受限的情况下，使用简化模型进

行复杂系统模拟提供了坚实的理论依据。

五、结论五、结论

本报告系统阐述了带切换扩散过程在

刻画复杂动态系统时的独特优势及其背后的

数学理论架构。作为连接确定性环境变迁与

随机微观扰动的桥梁，带切换模型突破了传

统扩散过程参数恒定的桎梏，通过引入马尔

可夫链机制，成功地将定性状态突变内生化

为数学模型的结构要素。这一范式的转变，

不仅为生物种群灭绝风险的评估和金融资产

长时行为的预测提供了更贴近现实的解释框

架，也揭示了系统宏观稳定性与微观状态之

间非线性的深刻关联。

从理论贡献来看，我们建立的基于共同

Lyapunov函数与M-矩阵的稳定性判据，有效

地解决了随机环境切换可能引发的稳定性悖

论，即解释了为何局部稳定的子系统在切换

下可能导致全局崩溃，反之亦然。同时，关

梁玉成：智能社会研究新议题与新方法

一、智能社会的时代变革本质一、智能社会的时代变革本质

（一）技术替代的演进逻辑（一）技术替代的演进逻辑

人类社会的技术替代历程始终围绕体力

与智力两大核心能力展开，呈现清晰的阶段

性演进特征。农业时代以生物能为核心生产

动力，体力劳动是社会发展的核心约束。彼

时，劳动能源依赖人力与牲畜，而生物质产

出受土地承载力限制，形成天然上限。这一

时代的典型困境是“马尔萨斯陷阱”——风

调雨顺、政通人和之际，人口快速增长，最

终超出土地供养能力，引发社会动荡。

工业文明的到来打破了这一桎梏，矿物

能替代生物能成为核心能源，蒸汽机、内燃

机等机械设备彻底突破体力劳动上限。不到

300年的工业发展创造的物质财富远超数千年

农业文明，社会形态随之发生根本性转变。

工业化进程中，体力劳动的重要性下降，人

口需求减少，生育率持续下降，马尔萨斯陷

阱逐渐消解。值得注意的是，工业时代的体

力岗位替代并未引发严重失业问题，马车夫

转型为司机等职业流动案例表明，人类可通

过转向智力劳动实现再就业，技术替代带来

的是职业结构升级而非就业危机。

2022年底大模型的出现标志着人类进入

智能时代，技术替代的焦点从体力劳动转向

认知能力。与工业时代“工具使用者转型”

不同，此次替代中人类更类似被汽车替代的


